矩阵的秩怎么计算(矩阵的秩怎样计算)

本篇文章给大家谈谈矩阵的秩怎么计算,以及矩阵的秩怎样计算对应的知识点,希望对各位有所帮助。

本文目录一览:

怎么计算矩阵的秩

矩阵的秩一般有2种方式定义

1.用向量组的秩定义

矩阵的秩 = 行向量组的秩 = 列向量组的秩

2.用非零子式定义

矩阵的秩等于矩阵的最高阶非零子式的阶

单纯计算矩阵的秩时,可用初等行变换把矩阵化成梯形

梯矩阵中非零行数就是矩阵的秩

矩阵的秩怎么求

用初等行变换化成梯矩阵, 梯矩阵中非零行数就是矩阵的秩.

可以同时用初等列变换, 但行变换足已.

有时可能用到一个结论:

若A中有非零的r阶子式, 则 r(A)=r;

若A的所有r+1阶子式(若存在)都是0, 则r(A)=r.

逆命题也成立.

满意请采纳^_^

怎样求一个矩阵的秩?

一般有以下几种方法

1、计算A^2,A^3 找规律,然后用归纳法证明

2、若r(A)=1,则A=αβ^T,A^n=(β^Tα)^(n-1)A

注:β^Tα =α^Tβ = tr(αβ^T)

3、分拆法:A=B+C,BC=CB,用二项式公式展开。

适用于 B^n 易计算,C的低次幂为零:C^2 或 C^3 = 0

4、用对角化 A=P^-1diagP

A^n = P^-1diag^nP

扩展资料

将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,矩阵的分解法一般有三角分解、谱分解、奇异值分解、满秩分解等。

在线性代数中,相似矩阵是指存在相似关系的矩阵。相似关系是两个矩阵之间的一种等价关系。两个n×n矩阵A与B为相似矩阵当且仅当存在一个n×n的可逆矩阵P。

一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

参考资料来源:百度百科——矩阵

矩阵的秩怎么计算?

矩阵的秩计算方法:矩阵的行秩,列秩,秩都相等,初等变换不改变矩阵的秩,如果A可逆,则r(AB)=r(B),r(BA)=r(B),矩阵的乘积的秩Rab=min{Ra,Rb}。

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n,当r(A)=n-2时,最高阶非零子式的阶数=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵,当r(A)=n-1时,最高阶非零子式的阶数=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零。

矩阵的秩的变化规律

(1)转置后秩不变

(2)r(A)=min(m,n),A是m*n型矩阵

(3)r(kA)=r(A),k不等于0

(4)r(A)=0=A=0

(5)r(A+B)=r(A)+r(B)

(6)r(AB)=min(r(A),r(B))

(7)r(A)+r(B)-n=r(AB)

(8)P、Q为可逆矩阵,则r(PAQ)=r(A)

(9)n阶方阵A,若|A|=0,则r(A)n,否则r(A)=n

(10)若Ax=B有解,则r(A)=r(A,B)

(11)若A~B,则人r(A)=r(B)

(12)若所有n阶子式为零,则r(A)t(t为A的逆序数)

(13)A中若有S阶非零子式,则r(A)=S

矩阵的秩怎么求?

矩阵的秩与特征向量的个数的关系:

特征值的个数等于矩阵的秩,特征向量的个数至少等于矩阵的秩,(即大于等于矩阵的秩),小于等于矩阵的阶数,等于阶数时,矩阵可相似化为对角矩阵,小于矩阵的阶数时,矩阵可以相似化为对应的约旦标准形。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。

类似地,行秩是A的线性无关的横行的极大数目。通俗一点说,如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

相关定义

方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或。

m×n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。

设A是一组向量,定义A的极大无关组中向量的个数为A的秩。

定义1. 在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。

例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。

定义2.A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。

上一篇:湖北大学2022美术录取分数线是多少(湖北大学2022美术录取分数线是多少分)
下一篇:在职读研好后悔(在职读研好后悔是怎么回事)

为您推荐

发表评论